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Abstract 
The null of cointegration tests for testing the existence of cointegration are available in literature in great diversity. The 
selection of a particular test from all these available tests is the crucial problem and often researchers face this. This study 
is carried out to solve this problem by comparing eight tests on basis two properties of size and power using a new 
proposed methodology of rank scores. Three different specifications of deterministic component and four sample sizes 
are considered. It is concluded that if asymptotic critical values are used then it results into an uncontrolled empirical size. 
While, if the simulated critical values are used, then the empirical size is controlled around nominal size. Moreover, on 
basis of power, a simple test, which is based on KPSS statistic, is the sole better performer for all of the different 132 
different cases of data generations considered in the study. 
Keywords: Cointegration Tests; Comparison; Power; Rank Score; Size 

1. INTRODUCTION 

The concept of cointegration was firstly introduced by (Engle and Granger 1987). Presence of a long run 
relationship between two or more time series, having order of integration as one is termed as existence of 
cointegration. More technically, for two time series say X and Y, (both of them are integrated of order one) are 
termed as cointegrated time series if their linear combination is stationary i.e. integrated of order zero. After the 
introduction of the concept of cointegration, a variety of tests for testing the cointegration have been introduced 
((P C B Phillips and Ouliaris 1990), (Johansen and Juselius 1990), (Pesaran, Shin, and Smith 2001), (B. 
Hansen 1990), (Choi 1994), (Sargan and Bhargava 1983), (Banerjee et al. 1986), (H. P. Boswijk 1989), (Akdi 
1996) and many more). In the start, cointegration tests were developed to test the null hypothesis of no 
cointegration. The first test with null of cointegration was developed by (Leybourne and McCabe 1994). After 
this paper, again a variety of null of cointegration tests have been introduced: ((Shin 1994), (Fernández-Macho 
and Mariel 1994), (Leybourne and McCabe 1994), (McCabe, Leybourne, and Shin 1997), (B. E. Hansen 1992) 
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and many others). This variety of tests have been developed by assuming different mechanisms of 
cointegration.  

For a same empirical problem or data set, two or more different tests of cointegration have contradicting results 
to each other ((Haug 1996) and (Mariel 1996)). Therefore, the practitioners and researchers were facing the 
problem of test selection. To answer the issue of selection of test, these cointegration tests have been 
compared to assess their performance in a number of studies in literature. Monte Carlo Simulations (MCS) 
have been frequently used for the said purpose of comparison as it has been widely used in the literature like 
(ul Islam Khan, Khan, and Hussan 2019), (W. M. Khan and Khan 2018), (Mantalos 2003), (Iglesias and Phillips 
2017) and many others. However, there are a very few studies in the literature using real data or analytical 
comparisons like (Pesavento 2004) and (Gonzalo and Lee 1998). The tests have been compared on the basis 
of two properties: Size and Power in nearly all of the studies using MCS. The Size and Power of Test are 
defined as  

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑎 𝑇𝑒𝑠𝑡 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝐻0  / 𝐻0 𝑖𝑠 𝑇𝑟𝑢𝑒) 

𝑃𝑜𝑤𝑒𝑟 𝑜𝑓 𝑎 𝑇𝑒𝑠𝑡 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝐻0  / 𝐻0 𝑖𝑠 𝐹𝑎𝑙𝑠𝑒) 

Where 𝐻0 represents the null hypothesis. 

If a test has higher power as compared to another provided that both are having the same size, then that test 
is considered better. Also, the tests in comparison may not have size distortion i.e. having size higher or lesser 
than the nominal size assumed. These two properties of size and power have been used in a number of studies 
((Banerjee et al. 1986), (Kremers, Ericsson, and Dolado 1992), (P. Boswijk and Franses 1992), (Haug 1996) 
and many more). (A. ul I. Khan and Zaman 2017) has provided a detailed survey of the literature of these 
comparisons. In most of these comparisons a fewer number of point alternative hypotheses have been 
considered, although the alternative space has infinite many point alternative hypotheses. From all of these 
comparative studies, two are broader than others and these are of (Haug 1996) and (Mariel 1996). These 
studies have used different data generation systems of cointegration, compared nine tests of two opposite null 
hypotheses each and covered almost all of the alternate space. However, (Haug 1996) and (Mariel 1996) 
concluded that there is not a single winner among all of these tests. 

The studies assessing the performance of cointegration tests were comparing tests with null of no cointegration 
most of times. However, there are fewer studies who have either compared only the tests with null of 
cointegration or a mixture of tests covering both null hypotheses. The study of (Gabriel 2003) is the only one 
“to the best of our knowledge”, assessing the performance of six test of null of cointegration. A variety of data 
generating processes and a fewer number of point alternatives have been considered by (Gabriel 2003). Similar 
to (Haug 1996) and (Mariel 1996), (Gabriel 2003) also concluded that there is not a single winner. 

As stated earlier, two or more tests are comparable on basis of power if they have the same size and especially 
when their size is stable around the nominal size assumed. However, asymptotic critical values have been 
used to draw conclusion about the rejection of null, in almost all of the comparative studies available in the 
literature. These asymptotic critical values lead to size distortion most of the times. Furthermore, again as 
stated earlier a fewer number of point alternative hypotheses have been considered in the literature which don’t 
lead to power curve. There are some studies in the literature that have focused only on one or two tests and 
tried to modify it by bootstrapping or fast bootstrapping or any other method to overcome the deficiencies of 
cointegration tests and then compared their results either using MCS or empirically. These studies include but 
are not restricted to (Kascha and Trenkler 2011), (Park, Ahn, and Cho 2011), (Ahlgren and Antell 2008) and 
(Jacobson and Larsson 1999).  

Keeping in view, three gapes in the literature are the goals of this paper. One is to check how the tests perform 
in terms of power if their size is maintained around a nominal assumed level. Second is to investigate the size 
distortions of tests when asymptotic critical values are used and third is to compare the tests on a wider number 
of point alternative hypotheses enabling us to draw power curves by introducing a new criterion or methodology 
for comparison “the average rank score”. This new proposed criterion of Rank Scores and Average Rank 
Scores considers the whole alternative space and draws an overall conclusion about the performance of tests. 
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This study will recommend test or tests for empirical applications as well as it will provide the details of poor 
performing tests. In the light of study, the statisticians, applied econometricians, data scientists and researchers 
will be able to choose a better performing test both in terms of size and power. This study will also guide the 
researchers and practitioners in choosing between simulated critical values and asymptotic critical values.  

The study is structured as: this section of “Introduction” is followed by the section “Tests of Null of 
Cointegration”, specifying the details of tests compared in the study. Then the next section “Methodological 
Framework” gives the details of data generation and the new criterion of Rank Scores and Average Rank 
Scores. This section is followed by the section “Discussion of Results” and then “Conclusions and 
Recommendations”. At the end “References” are listed. 

2. TEST OF NULL OF COINTEGRATION 

The performance of eight cointegration tests have been assessed in the study. Their details are: 

For two I(1) time series X and Y of length T, with X having m components, (Leybourne and McCabe 1994) 
recommended the use of LM type test, denoted by “Lm”, developed by (Kwiatkowski et al. 1992) for testing null 
of cointegration, i.e. 

ˆ
t denotes the residuals of the Ordinary least Squares regression of Y on X i.e. 

𝑌𝑡 = 𝜃𝜓𝑡 + 𝛽𝑋𝑡 + 𝜇𝑡                                                (1) 

t
 contains both the intercept and linear time trend and 𝜃 is its respective coefficient matrix. Similarly, 𝛽 is 

the respective coefficient vector of X.  

In the same paper, (Leybourne and McCabe 1994) proposed the use of a modified LM stat, denoted by “Lb” 
i.e. 

According to (Mariel 1996), the lag truncation parameter 𝑙 plays a vital role in the performance of test and 𝑙 =
4 has been recommended by him. 

Later on (Shin 1994) recommended the following OLS regression instead of (1). 

𝑌𝑡 = 𝜃𝜓𝑡 + 𝛽𝑋𝑡 + ∑ 𝜋𝑗∆𝑋𝑡−𝑖

𝑘

𝑗=−𝑘

+ 𝜇𝑡                                                (2) 

𝑘 denotes the maximum number of lags or leads. Again, the same test statistic is considered i.e. 
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According to the recommendations (Mariel 1996) and (Shin 1994),  𝑙 = 4 and 𝑘 = 5 have been used in the 
current study. 

Continuing on to the same idea and philosophy, (McCabe, Leybourne, and Shin 1997) recommended the 
Maximum Likelihood Estimation (MLE) in place of OLS. According to (McCabe, Leybourne, and Shin 1997), 

estimate 
ˆ

t from (2) using OLS and then use MLE to estimate 
ˆ
t  from  

 

The selection of 𝑝 is based on the minimum Akaike information Criterion (AIC). The modified version of test is  

 

and    with  being lower triangular matrix of ones.  

(Fernández-Macho and Mariel 1994) introduced two tests (H1 and H2), comparing two estimators , both of 

them consistent under null, whereas, under alternative, one is inconsistent. One is the OLS estimate of  say 

ˆ
L  from (2). Furthermore, defining  

 

ˆ
j
represent the same OLS estimates obtained from (2). The other estimator 

ˆ
D  is obtained from the 

regression using OLS  

(4)t D t tx      
 

The test stats H1 and H2 are:  

 

ˆ
DV

and 
ˆ
LV

  represents the estimated variance covariance matrices of 
ˆ

D  and
ˆ

L respectively.  
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On the basis of Fully Modified OLS (FMOLS) estimation method developed by (Peter C B Phillips and Hansen 
1990), (B. E. Hansen 1992) introduced a test stat, denoted by “Lc”, given as 

 

 

and 
ˆ

t


are FMOLS residuals of (1). The technical details of the test can be found in (B. E. Hansen 1992). 
Moreover, (P. Boswijk and Franses 1992) gave the critical values of Lc. 

(Xiao 1999) introduces another test denoted as “RT”, using the fluctuations of FMOLS residuals 
ˆ

t


, i.e. 

 

The abbreviations of eight tests with their source paper are provided in Table 1. These abbreviations have been 
used in the rest of study for convenience. 

TABLE 1 - ABBREVIATIONS OF TESTS 
S. No Source Paper and Name of Test Abbreviation  

1 Simple Lm test (Leybourne and McCabe 1994) “LMKPSS” 
2 Modified Lm i.e. Lb (Leybourne and McCabe 1994) “LBI” 
3 Shin’s C i.e. Sc (Shin 1994) “SC” 
4 Modified Lm based on MLE (McCabe, Leybourne, and Shin 

1997) 
“MLS” 

5 Hausman H1 (Fernández-Macho and Mariel 1994) “HH1” 
6 Hausman H2 (Fernández-Macho and Mariel 1994) “HH2” 
7 Hansen’s Lc (B. E. Hansen 1992) “HLC” 
8 Xiao RT (Xiao 1999) “XFT” 

3. METHODOLOGICAL FRAMEWORK 

The details of equations used to generate the cointegrated system and the new proposed criterion of Rank 
Scores and Average Rank Scores have been laid out in the two subsections of this section. MATLAB has been 
used for analysis. 

3.1. Data Generation (ADG): 

Following set of equations have been used to generate the cointegrated system for two time series y and x of 
length T. This system of equations is a modified version of (Jansson 2005) for time trend. 

 

  being an identity matrix. Under null hypothesis of cointegration and alternative hypothesis of no cointegration 
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Following set of   under alternative hypothesis has been considered 

 

tD
 comprises of intercept and linear time trend i.e. 

 

and   is the respective coefficient vector. Three cases of are under consideration in the study: 

Neither Intercept nor Linear Time Trend is present (denoted as D0LT0): 
 0 0 

  

Only Intercept is present (denoted as D1LT0): 
 1 0 

  

Both Intercept and Linear Time Trend are present (denoted as D1LT1): 
 1 1 

 

The performance of tests has been evaluated using 10 point alternatives, four sample sizes (𝑛 = 30, 𝑛 =

60, 𝑛 = 120 𝑎𝑛𝑑 𝑛 = 240) and three different cases of  . So, it all sums up to 132 different data 
generations. 

3.2. Rank Scores: 

If ( )i n
 
is the power of a test  at sample size of n and point alternative hypothesis i  for l number of tests 

i.e.  1,2,....................., l   and   number of point alternative hypotheses i.e. 

1,2,.....................,i  , then rank of a test  at a specific point alternative hypothesis i  and at sample 

size n  is denoted by ( )i n  and defined as  

    
  

1,2,........
i i Descending Order

i

n Rankings n 






   

The Rank Score  n  of a test  at sample size n  is obtained by averaging these rankings  i n  over 

all the point alternate hypotheses i.e. 
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The reciprocals of sample size are used as weights to obtain a weighted average of all these rank scores to 

get a final statistic 
  

 
1

1
n

n

n
n

n







 



 

On basis of rank scores  n  or weighted average of rank scores
 , tests are categorized into three; 

better, mediocre or average and worst performers. From eight tests; tests possessing rank scores lesser or 
equal than 2 are regarded as better performers, tests possessing rank scores greater than 2 but lesser or equal 
than 4 are ranked as average or mediocre and tests possessing rank scores greater than 4 are regarded as 
poor or worst performers.    

4. RESULTS AND DISCUSSIONS 

Size and Power are obtained using 𝑀 = 30,000 for each test except the MLS test, as it uses the numerical 
optimization algorithms to find the maximum likelihood estimates, which takes huge amount of time. So, for 
MLS: 𝑀 = 5,000 is considered suitable. These sizes are given in Table 2. It is obvious from Table 2 that not 
a single test has empirical size around the considered significance level or nominal size of 0.05 for all three 
specifications of deterministic part and four sample sizes. For instance, LMKPSS has size around 0.05 for all 
four sample sizes only when deterministic part is D1LT0. The values of empirical size around the specified 
nominal size of 0.05 have been marked as BOLD in Table 2. It is observed that from out of total 96 different 
cases, only for 15 cases the empirical size is around 0.05. 

TABLE 2 - ASYMPTOTIC CRITICAL VALUES’ SIZE 

Tests 

D0LT0 D1LT0 D1LT1 

n=30 n=60 n=120 n=240 n=30 n=60 n=120 n=240 n=30 n=60 n=120 n=240 

LMKPSS 0.2271 0.2256 0.2194 0.2232 0.0589 0.0534 0.0575 0.0533 0.0002 0.0007 0.0004 0.0002 

HH1 0.0076 0.0080 0.0065 0.0049 0.0023 0.0046 0.0051 0.0061 0.0033 0.0114 0.0148 0.0170 

HH2 0.0111 0.0075 0.0064 0.0056 0.0055 0.0060 0.0063 0.0064 0.0193 0.0161 0.0166 0.0177 

SC 0.0048 0.0186 0.0238 0.0252 0.0638 0.0537 0.0498 0.0528 0.2034 0.0573 0.0521 0.0501 

LMLBI 0.3407 0.2840 0.2464 0.2384 0.2134 0.1299 0.0797 0.0594 0.1068 0.0375 0.0055 0.0005 

XFT 0.0030 0.0220 0.0180 0.0180 0.1870 0.1740 0.1800 0.1870 0.4130 0.4370 0.4430 0.4090 

HLC 0.5324 0.4352 0.2984 0.1552 0.5580 0.4074 0.3342 0.1772 0.5898 0.4208 0.3414 0.2188 

MLS 0.6580 0.6090 0.5860 0.5400 0.5890 0.4120 0.3350 0.2980 0.3640 0.1170 0.0650 0.0630 

 
TABLE 3 - SIMULATED CRITICAL VALUES’ SIZE 

Tests 

D0LT0 D1LT0 D1LT1 

n=30 n=60 n=120 n=240 n=30 n=60 n=120 n=240 n=30 n=60 n=120 n=240 

LMKPSS 0.0476 0.0499 0.0510 0.0478 0.0514 0.0538 0.0482 0.0479 0.0454 0.0467 0.0468 0.0487 

HH1 0.0523 0.0502 0.0491 0.0443 0.0506 0.0481 0.0502 0.0501 0.0480 0.0507 0.0511 0.0505 

HH2 0.0509 0.0558 0.0484 0.0485 0.0518 0.0513 0.0442 0.0490 0.0561 0.0512 0.0472 0.0480 

SC 0.0509 0.0529 0.0519 0.0473 0.0485 0.0548 0.0521 0.0501 0.0542 0.0498 0.0485 0.0481 

LMLBI 0.0489 0.0505 0.0498 0.0511 0.0490 0.0513 0.0497 0.0513 0.0416 0.0517 0.0452 0.0473 

XFT 0.0467 0.0441 0.0525 0.0472 0.0390 0.0517 0.0542 0.0482 0.0536 0.0542 0.0524 0.0459 

HLC 0.0442 0.0478 0.0492 0.0500 0.0484 0.0492 0.0496 0.0490 0.0478 0.0500 0.0534 0.0540 

MLS 0.0370 0.0430 0.0450 0.0640 0.0470 0.0460 0.0630 0.0380 0.0380 0.0530 0.0570 0.0570 
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To control empirical size around 0.05, simulated critical values for all tests at all four sample sizes using all 
three specifications of deterministic part have been found and then by using these simulated critical values, 
again empirical size is calculated and these sizes are displayed in  

Table 3.  It is evident from  

Table 3 that all tests have empirical size around 0.05 now. It is very important to control empirical size around 
0.05 in a statistical hypothesis testing, because a large size will enlarge the power. So, as compared to the 
considered nominal significance level, a decrease in empirical size leads to a decrease in power and an 
increase in empirical size leads to an increase in power resulting in a meaningless conclusion. 

As the use of simulated critical values leads to controlled empirical size around 0.05, the nominal size 
considered in this paper, so, these have been used for the estimation of power.  

The results of Monte Carlo experiment in finalized form of rank scores and weighted average of rank scores 
are displayed in Table 4, when presence of neither intercept nor linear time trend (D0LT0) is assumed in data 
generation and test implementation. An in-depth evaluation of Table 4 reveals that LMKPSS has a rank score 
of 1 at all sample sizes and LMLBI is worst performer at all sample sizes except 𝑛 = 60, where it becomes 
just an average performer. Similarly, SC and HH2 are average performers at all sample sizes. However, HH1 
is a mediocre performer at small sample sizes of 𝑛 = 30 & 60. XFT is a worst performer at all four sample 
sizes. While, HLC is worst performer at the small sample sizes of 𝑛 = 30 & 60, however, it improves and 

becomes an average one at larger sample sizes of 𝑛 = 120 & 240. The last test i.e. MLS is poor performer 
for all sample sizes.  

TABLE 4 - RANK SCORES FOR D0LT0 

Tests  30   60   120   240    

LMKPSS 1** 1** 1** 1** 1.00** 

SC 3.1* 3.1* 2.6* 2** 2.96* 

HH2 2.7* 3.2* 3.3* 4.1* 3.01* 

HH1 3.9* 4.1* 4.7 5.3 4.15* 

LMLBI 5.9 4.4* 5.2 4.9 5.34 

XFT 4.6 8 7.3 7.3 6.05 

HLC 7.8 5.4 4.3* 3.7* 6.42 

MLS 7 6.8 7.6 7.6 7.07 

Note: ** shows that test is a better performer and * shows that test is an average performer 

The last column of Table 4 provides an overall summary about the performance of eight tests, as it is the 
weighted average of rank scores. According to this column only one test has a better performance, i.e. 
LMKPSS. Three tests have an overall average performance and all these three tests are based on DOLS 
estimation i.e. HH2,  HH2 and HH1. The remaining four tests are overall worst performers.  

TABLE 5 - RANK SCORES FOR D1LT0 

Tests  30   60   120   240    

LMKPSS 1** 1** 1** 1** 1.00** 

SC 3.3* 2.6* 2** 2** 2.85* 

HH2 3.6* 3.4* 4.3* 4.7 3.71* 

MLS 5 4* 5 5.9 4.79 

XFT 3.4* 6.3 7.3 7.8 4.99 

HH1 4.9 4.9 5.3 5.6 5.00 

LMLBI 7.8 5.9 4* 3.1** 6.47 

HLC 7 7.9 7.1 5.9 7.18 

Note: ** shows that test is a better performer and * shows that test is an average performer 

The results of Monte Carlo experiment in final form of rank scores and weighted average of rank scores are 
displayed in Table 5, when presence of only intercept (D1LT0) is believed in data generation and test 
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implementation. A systematic inspection of Table 5 discloses that one test i.e. LMKPSS has a constant rank 
score of 1 throughout all four sample sizes and the other i.e. LMLBI improves with increase in sample size as 
it a worst performer up to sample size of 60, and it becomes a mediocre one at sample size of 120 and 240. 
While, SC exhibits a consistent behavior as it improves its rank score with increase in sample size and is an 
average performer at all four sample sizes. The rest of two (HH2 and HH1) demonstrate an inconsistent 
behavior as these two increase their rank scores with increase in sample size. However, HH2 is an average 

performer up to 𝑛 = 120. Furthermore, SC is performing better for all four sample sizes. While, HH1 is a worst 
one for all four sample sizes. Similarly, MLS is a mediocre one at only 𝑛 = 60 and for the rest of sample sizes 
it is the worst one. XFT and HLC are worst ones for all four sample sizes except XFT having mediocre 
performance for sample size of 30. 

The last column of Table 5 illustrates the weighted average of rank scores and hence it provides an overall 
summary about the performance of tests. This last column reveals that only a single test i.e. LMKPSS is an 
overall better performer. Two DOLS estimation based tests i.e. SC and HH2 are overall performing average. 
The rest of five tests are overall worst performers. 

The finalized results of Monte Carlo experiment in form of rank scores and weighted average of rank scores 
are displayed in Table 6, when it is believed that both intercept and linear time trend (D1LT1) are present in 
data generation and test application. An in-depth evaluation of Table 6 reveals that LMKPSS is the leading 
performer having the minimum constant rank score of 1 at all four sample sizes and the other LMLBI shows a 
consistent behavior as it decreases its rank score with increase in sample size. LMLBI is a poor performer for 
small sample sizes of 30 and 60, an average one at large sample size of 120 and 240. While, SC is an average 
one at the smallest sample size of 30, a better one for rest of all three sample sizes. Similarly, HH2 and HH1 
are average ones at the smallest sample size of 30 and worst ones for rest of three sample sizes. XFT is a 
mediocre one at the smallest sample size of 30 and moderately small sample size of 60. However, it is worst 
one at large sample sizes of 120 and 240. Similarly, HLC is the worst one for all four sample sizes. While, MLS 
is the worst one at the smallest sample size of 30, an average one for rest of three sample sizes.   

TABLE 6 - RANK SCORES FOR D1LT1 

Tests  30   60   120   240    

LMKPSS 1** 1** 1** 1** 1.00** 

SC 4.1* 2** 2.1** 2** 3.13* 

HH2 2.7* 4.6 5.1 5.7 3.73* 

XFT 3.4* 4.3* 6.6 6.8 4.29* 

HH1 4* 6 5.9 6.1 4.93 

MLS 7.7 3.1* 2.9* 4* 5.59 

LMLBI 6.4 7.1 4.4* 3* 6.09 

HLC 6.7 7.9 8 7.3 7.23 

Note: ** shows that test is better performer and * shows that test is an average performer 

The last column of Table 6 shows an overall performance of tests as it is the weighted average of rank scores. 
Single test is an overall better performer i.e. LMKPSS. Three tests are overall average performers, from these 
three; two are based on DOLS estimation i.e. SC and HH2 and one is based on FMOLS estimation i.e. XFT. 
Rest of four tests are overall worst performers.  

5. CONCLUSIONS AND RECOMMENDATIONS 

This study is aimed to evaluate the performance of null of cointegration tests on basis of a new proposed 
methodology of rank scores using Monte Carlo Simulations. Considering the discussion in Section 4, it is 
concluded that use of asymptotic critical values for these eight tests considered in this study, led to distortion 
in empirical size. For almost all of cases of deterministic component and sample sizes, these eight tests had 
empirical size way greater or way smaller than the nominal size considered. This means that these eight tests 
faced problems of over rejection as well as under rejection. In statistical and econometric analysis these two 
problems of over rejection and under rejection have worse implications, leading to useless conclusions and 
recommendations.       
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To solve these problems of over rejection and under rejection, simulated critical values were estimated and 
then again empirical sizes were calculated. This practice controlled the empirical size around nominal size. For 
further evaluation of performance on basis of Power, the same were used to ensure the empirical size around 
nominal size of 0.05 for all eight tests. 

For 1st case of deterministic part i.e. D0LT0, LMKPSS, which is a test based on the residuals of cointegrating 
regression, is consistently performing better for all sample sizes. Three tests (SC, HH2 and HH1) which are 
based on DOLS estimation, have average performance. The rest of four tests (LMLBI, XFT, HLC and MLS) are 
worst performers. In general, only the presence of intercept (D1LT0) in both data generation and test 
implementation does not affect the performance of tests except slight changes, as the same LMKPSS is the 
better and leading performer. Similarly, the same two tests based on DOLS estimation i.e. SC and HH2 are 
average performers. However, HH1 joins the club of four worst performing tests. For 3rd case of deterministic 
part i.e. D1LT1, again there is not much of difference in performance of tests. The same LMKPSS is the winner 
in performance and three tests i.e. SC, HH2 and XFT are average performers. The rest of four tests are worst 
performers. 

In the light of conclusions, it is recommended with great confidence that asymptotic critical values may not be 
used for decision of rejection of null, instead the simulated ones may be used. In modern age, the use of 
simulated critical values is easily possible due to the availability of fast computers. While testing for possible 
cointegration using tests with null of cointegration, the LM test may be preferred as compared to the others. 
The use of tests based on complex and complicated methods of estimation such as DOLS, FMOLS and MLE 
may be avoided. 
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