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Abstract 
Human mobility pattern mining has emerged as a significant research field, yet existing studies are relatively isolated and 
lack an integrated review of addressed issues and tested solutions. This systematic review aims to provide a 
comprehensive analysis of human mobility pattern mining research across three interconnected dimensions: data 
processing approaches, methodological landscape, and future research directions. Following PRISMA guidelines, this 
study systematically reviewed 43 carefully selected papers from Scopus-indexed journals, covering the period from 2018 
to 2025. A structured two-phase approach was used to extract and categorize information according to four research 
questions, and then analyze patterns to generate insights and recommendations through comprehensive synthesis. The 
analysis revealed six distinct conceptual perspectives on human mobility research, five categories of real-world 
applications, and five common methodological approaches ranging from traditional statistical methods to advanced 
artificial intelligence techniques. Data quality assessment can be categorized into three fundamental dimensions: 
completeness, accuracy, and consistency. A four-phase preprocessing pipeline was developed with integrated quality 
control mechanisms. Current challenges include data quality limitations, temporal dimension inadequacies, and scalability 
barriers. This review provides a systematic organization of fragmented knowledge and identifies four key future research 
directions: enhanced data integration, advanced spatiotemporal modeling, semantic enhancement, and scalable 
computing infrastructure. These findings establish foundations for developing more robust, scalable, and practically 
applicable mobility analysis frameworks. 
 
Keywords: human mobility, mobility mining, urban mining, trajectory pattern mining, human trajectory 

1. INTRODUCTION 

Existing research in human mobility pattern mining has developed across multiple directions. However, several 
critical gaps remain that limit a comprehensive understanding of the field, as previous studies have highlighted 
the fragmented current research approaches. The existing studies on mobility data are relatively isolated and 
lack an integrated review of addressed issues and tested solutions (Wang, Miwa and Morikawa, 2020). This 
isolation has led to inconsistent conceptual foundations, where researchers define human mobility behaviors 
in different ways without unified theoretical frameworks. Furthermore, the complexity of mobility data 
processing presents some challenges, as trajectory data without semantic information is hard to understand 
and interpret (Alowayr et al., 2021), while GPS data often contains outliers and noisy measurements that 
require cleansing before analysis (Dabbas and Friedrich, 2022). 

The methodological approaches reveal additional complexities, with limited methodological knowledge on using 
geographic context for model generalizability (Roy et al., 2022), and traditional methods lacking accuracy and 
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granularity in analyzing movements and activities (Huang and Wang, 2022). These methodological limitations 
are compounded by the lack of standardized evaluation approaches, making it difficult to compare different 
research methods effectively. The complexity of various networks and pathways for mobility complicates 
comparisons of research methods (Jahanmanesh, Farhadi and Zamanifar, 2025), while different studies utilize 
diverse datasets and metrics that further complicate method comparisons. 

The need for a comprehensive systematic literature review of human mobility pattern mining research is driven 
by several critical knowledge gaps that currently limit both theoretical understanding and practical applications. 
First, data processing approaches lack systematic organization and standardized methodologies. The growth 
of mobility data sources has created new opportunities but also new challenges in data quality assessment, 
preprocessing, and integration (Wang, Miwa and Morikawa, 2020). Researchers face difficulties in selecting 
appropriate data sources and preprocessing techniques for their specific research objectives, as current 
literature provides limited guidance on these important decisions. 

Second, the methodological approaches demonstrate significant diversity without a comprehensive 
comparative analysis. While this diversity reflects the field's innovation, it also creates confusion about which 
methods work best for different types of mobility analysis tasks. The absence of systematic validation 
frameworks makes it difficult for researchers to select appropriate analytical approaches and evaluate their 
effectiveness. 

Finally, rapid technological advances and emerging application domains require systematic identification of 
innovation trends and future research directions. Current research lacks a comprehensive synthesis of 
emerging opportunities and persistent challenges that could guide future research development and practical 
implementation. 

This systematic review addresses these gaps by providing a comprehensive analysis across three 
interconnected dimensions: data processing approaches, methodological approaches, and future research 
directions. By systematically examining these dimensions, this review contributes to the field by organizing 
fragmented knowledge, identifying best practices, and providing guidance for both new and experienced 
researchers in human mobility pattern mining. 

The remainder of this paper is organized as follows. Section 2 presents the literature review framework and 
methodology used for systematic analysis. Section 3 examines the results and discussion organized into two 
main components: data and preprocessing, covering data source characteristics, quality assessment, 
preprocessing approaches, and methodological recommendations; and methodological landscape, analyzing 
common methods and algorithms, validation techniques, and recommended guidelines. Section 4 presents 
research innovation trends and future directions by discussing methodological innovations, current challenges, 
and emerging opportunities. Section 5 provides conclusions that synthesize key findings and their implications 
for advancing human mobility pattern mining research toward more effective, scalable, and practically 
applicable solutions. 

2. SYSTEMATIC REVIEW METHODOLOGY 

This study presents a comprehensive literature review of human mobility pattern mining techniques following 
a previously proposed framework (Wang, Miwa and Morikawa, 2020), as illustrated in Figure 1. The literature 
review methodology consists of five sequential steps that ensure systematic and comprehensive analysis of 
the current state of human mobility pattern mining research. 
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FIGURE 1 - SYSTEMATIC REVIEW FRAMEWORK 

 

Step 1 involves identifying the need for a systematic review, which was accomplished by examining the current 
state of human mobility pattern mining research and identifying critical knowledge gaps that require 
comprehensive analysis. The literature reveals several challenges: (1) fragmented conceptual foundations with 
diverse theoretical perspectives that lack a unified understanding, (2) inconsistent approaches to data 
processing and quality assessment that limit analytical reliability, (3) varied methodological frameworks without 
standardized validation approaches, and (4) insufficient synthesis of emerging innovations and future research 
directions. To address these critical gaps in current understanding, four research questions (RQs) were 
formulated. 

1. RQ1: What data quality and preprocessing approaches are employed in human mobility pattern 
mining? Detailed as (RQ1.1) What are the data quality assessment metrics that are utilized in human 
mobility pattern mining?; (RQ1.2) What are the preprocessing approaches employed to address data 
challenges?; and (RQ1.3) What are the recommended preprocessing methodologies for human 
mobility data? 

2. RQ2: What constitutes the current methodological landscape in human mobility pattern 
mining? Detailed as (RQ2.1) What are the common methods and algorithms used for mining human 
mobility behavior patterns?; (RQ2.2) What validation and evaluation techniques are employed, and 
how do they align with different mining approaches?; and (RQ2.3): What are the recommended 
validation and evaluation guidelines for human mobility pattern mining? 

3. RQ3: What are the research innovations, trends, and future directions in human mobility 
pattern mining? Detailed as (RQ3.1) What methodological innovations and technological advances 
are emerging in human mobility pattern mining?; (RQ3.2) What are the key research gaps and 
persistent challenges that limit current capabilities?; and (R34.3) What future research directions and 
emerging opportunities can address current limitations? 

Step 2 involves identifying a proper review protocol by adopting the PRISMA (Preferred Reporting Items for 
Systematic Reviews and Meta-Analysis) guidelines. A comprehensive search string was constructed combining 
key terms related to human mobility, analytical methods, and application contexts to capture the breadth of 
relevant literature: 

(("human mobility" OR "mobility pattern*" OR "movement pattern*" OR "human movement") AND ("mining" OR 
"analysis" OR "extraction" OR "clustering" OR "prediction") AND ("urban" OR "city" OR "trajectory" OR "GPS" 
OR "location")) 

For the inclusion and exclusion criteria, this review focused specifically on outdoor human movement 
trajectories and pattern mining techniques and excluding non-human movements such as ships, animals, or 
pollution trajectories. Additional criteria included peer-reviewed journal publications, English language 
publications, and studies with clear methodological descriptions for human mobility pattern mining. 

Step 3 involves searching for primary studies from Scopus-indexed journals covering the period 2018-2025, 
and the initial search yielded 6,165 publications. After rigorous screening focused on outdoor human movement 
trajectories and excluding non-human movements, 249 papers were identified for detailed review. The final 
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selection criteria, resulted in 43 highly relevant publications. The temporal distribution of selected papers 
demonstrates consistent research interest in this field: 2018 (7 papers), 2019 (9 papers), 2020 (3 papers), 2021 
(6 papers), 2022 (7 papers), 2023 (4 papers), 2024 (4 papers), and 2025 (4 papers). 

Steps 4 and 5 involve extracting relevant information and interpreting findings through a structured two-phase 
approach as illustrated in Figure 2. 

Phase 1: Extract and Categorize Information. We systematically reviewed all 43 papers and extracted key 
information in relation to each research question. For each research question, information was organized into 
specific categories that correspond to the sub-questions. 

Phase 2: Analyze Patterns and Generate Insights. We analyzed the categorized information to find connections 
and patterns, then developed implications and recommendations. This process combines findings from 
different categories to create new knowledge that wasn't obvious from individual papers. 

 
FIGURE 2 - INFORMATION EXTRACTION AND SYNTHESIS METHODOLOGY 

 

As shown in Figure 3, each research question follows a systematic pattern where two foundational sub-
questions are combined and analyzed to generate implications and recommendations. For RQ1, data quality 
assessment and preprocessing approaches are synthesized to create methodology recommendations. For 
RQ2, methods/algorithms and validation techniques are integrated to develop validation guidelines. The final 
analytical step involves synthesizing all findings from RQ1 and RQ2 through a comprehensive analysis to 
address RQ3 about future directions.  

 

 

FIGURE 3 - SYSTEMATIC FLOW OF RESEARCH QUESTIONS 

3. RESULTS AND DISCUSSION 

This section presents comprehensive findings, organized into three sections. The analysis begins with data 
quality and preprocessing to investigate data quality assessment metrics essential for reliable analysis, 
preprocessing approaches used to transform raw data into analyzable formats, and methodological 
recommendations for effective data preparation pipelines. Subsequently, the methodological landscape 
examines the common algorithms and methods used in mobility pattern mining, as well as validation and 
evaluation techniques organized by mining approach, and provides comprehensive guidelines for selecting 
appropriate assessment strategies. 

3.1. Data Quality and Preprocessing Approaches 

Data quality and preprocessing represent critical components in human mobility pattern mining research, as 
they determine the quality and reliability of the analytical results. This section examines three essential aspects 
of data handling in mobility research. First, the types and characteristics of different data sources that 
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researchers use to capture human mobility behavior. Second, data quality metrics to evaluate data quality 
before preprocessing and analysis begin. Third, preprocessing approaches that researchers apply to transform 
raw mobility data into formats that are analyzable. Finally, methodological recommendations for effective 
preprocessing pipelines based on successful practices across multiple studies. 

3.1.1. Types and Characteristics of Data 

Human mobility pattern mining research utilizes diverse data sources that capture different aspects of 
movement behavior. Analysis of the literature reveals six primary data source types with distinct characteristics 
that define their capabilities and applications across mobility studies. 

High-precision data provide exact spatial coordinates and temporal resolution for accurate trajectory 
reconstruction and location-based investigations. GPS and location data from smartphones, vehicles, and 
phones are the most popular. Researchers include spatial context with trajectory data from movement 
monitoring devices, temporal location records, and POI data (Fu et al., 2019; Herberth et al., 2020; Kong et al., 
2022; Shan, Sun and Zheng, 2022; Matloub and Kostanic, 2023). 

System-level data sources provide transportation network and infrastructure interconnections, revealing 
system performance and usage patterns. Taxi trip records, fare information, and pickup/dropoff locations reveal 
urban mobility trends in transportation data. Bus card, metro, and transit schedule data show communal 
transportation behaviors. License plate recognition (LPR) systems and fleet monitoring data are included in 
vehicle data, whereas multi-modal transport data helps explain how people navigate urban transportation 
networks (Zheng et al., 2018; Chen, Cai and Xiong, 2021; Aljeri, 2022; Hussain et al., 2023; Francia, Gallinucci 
and Golfarelli, 2024; Miao and Liao, 2025). 

Population-wide data sources enable research on large demographic groups and geographic areas through 
data collection infrastructure. Smartphones are used to analyze mobility using Call Detail Records (CDR) and 
cell tower contacts from telecom companies. Smartphone location data uses cellular location, while sensor 
data and app usage patterns reveal individual mobility. This data type has population-wide representation and 
significant period coverage, but poorer spatial precision than GPS data (Thuillier et al., 2018; Fu et al., 2019; 
Li et al., 2019; Zhu et al., 2019; Seppecher et al., 2021; Solomon et al., 2021; Yin, Lin and Zhao, 2021).  

Contextually rich data sources add semantic richness to location data for enhancing data meaning. User-
generated location information from geo-tagged tweets from social media platforms provides real-time mobility 
insights with semantic context. Location metadata in social media posts uniquely combines spatial information 
with social and semantic elements of mobility behavior to provide rich contextual information about mobility 
purposes and social aspects of movement (Yang, Cheng and Chen, 2018; Jiao et al., 2019; Zhu et al., 2019; 
Seppecher et al., 2021; Aljeri, 2022; Shan, Sun and Zheng, 2022). 

Real-time data sources enable dynamic applications and responsive systems by detecting and analyzing 
mobility trends in real time. Sensor data includes Bluetooth proximity detection for co-location and social 
interaction monitoring. WiFi connection records and access point data provide indoor and urban location 
information, while mobile device accelerometer and gyroscope data detect transportation modes and activities. 
IoT sensor networks for traffic monitoring enable large-scale traffic flow analysis and urban mobility 
comprehension through continuous monitoring and real-time data (Solomon et al., 2021; Jiang et al., 2023; 
Ibañez et al., 2025; Miao and Liao, 2025). 

Ground-truth data sources offer direct verification of mobility behaviors and motivations through user-provided 
information that cannot be captured through automated methods. Demographic and socioeconomic data 
explain mobility patterns across population groups, while questionnaire responses provide ground-truth data 
for validation and a deeper understanding of movement motivations, which validate and explain other data 
sources (Yin, Lin and Zhao, 2021; Nejadshamsi et al., 2025). 

3.1.2. Data Quality Assessment 

Effective human mobility pattern mining requires systematic evaluation of data quality before preprocessing 
and analysis begin. Based on the literature analysis, data quality assessment can be categorized into three 
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fundamental dimensions that directly impact analytical reliability and research outcomes, as summarized in 
Table 1. 

Completeness Assessment evaluates mobility datasets for gaps or missing values. Time series data 
continuity is assessed by temporal completeness. Frequent-pattern mining is employed to address gaps in 
smartphone-based movement data, demonstrating the impact of GPS data gaps on trajectory reconstruction 
accuracy (Zhao, Jonietz and Raubal, 2021). Sparse datasets require complex reconstruction methods for 
useful analysis in large-scale low-frequency mobile phone data (Li et al., 2019). Spatial completeness ensures 
that mobility patterns are captured across the study area without spatial bias. Incomplete trajectories can 
misinterpret movement patterns and lead to errors in destination identification, as demonstrated by unreliable 
GPS datasets that present computational efficiency issues (Soares De Sousa, Boukerche and Loureiro, 2023). 

Accuracy Assessment compares recorded mobility data with actual movement behaviors for accuracy. 
Positional accuracy measures the precision of GPS coordinates and the accuracy of measurements. Studies 
demonstrate that signal interference and multipath effects in urban areas can cause significant positioning 
errors. Manual validation of 600 waypoints achieved about 98% TMC assignment validation accuracy (Vander 
Laan, Franz and Marković, 2021). Temporal accuracy assesses the precision and synchronization of 
timestamps across different data sources, which becomes critical when integrating multiple mobility datasets 
with varying temporal resolutions. Mobility dataset correlations are investigated using Pearson correlation and 
t-tests for statistical significance (Chen, Cai and Xiong, 2021).  

Consistency Assessment evaluates the uniformity and logical coherence of mobility data across datasets 
and integrated sources. Internal consistency checks mobility sequences for logical relationships, such as 
reasonable movement speeds and distances, and chronological order. Chi-square testing is used to verify the 
consistency of travel hotspots and paths (Du, Meng and Liu, 2024). Integrating diverse data types requires 
coordinate systems, temporal references, and semantic classifications to be consistent among sources. Format 
consistency standardizes data structures and measurement units across collecting methods and time periods, 
addressing sample frequency and data density issues (Chen, Cai and Xiong, 2021). 

Practical implementation of quality assessment requires quantitative metrics that can guide preprocessing 
decisions. As described in Table 2, completeness ratios calculate the percentage of complete records versus 
the total expected records, with thresholds typically set between 70% and 90%, depending on analytical 
requirements. Accuracy metrics utilize ground truth comparisons where available, with Mean Absolute Error 
(MAE) and Root Mean Square Error (RMSE) commonly applied for positional accuracy assessment. MAE and 
standard deviation are used to assess reconstruction quality (Li et al., 2019), while MSE and MAE are applied 
for validation of behavioral similarity measures (Maiti and Subramanyam, 2019). Consistency validation 
employs statistical techniques such as outlier detection and logical constraint checking to identify data 
anomalies that require preprocessing attention. 

Preprocessing strategy emerges from quality assessment, enabling researchers to select appropriate 
preprocessing techniques based on identified data limitations. As summarized in Table 2, high completeness 
scores may require minimal imputation, whereas low completeness necessitates sophisticated reconstruction 
methods for trajectory completion (Li et al., 2019) and gap imputation using frequent pattern mining (Zhao, 
Jonietz and Raubal, 2021). Poor accuracy scores indicate the need for enhanced filtering and smoothing 
techniques, while consistency issues require standardization and normalization procedures before analysis can 
proceed effectively. Routing performance assessment and waypoint conflation accuracy provide exemplary 
models for comprehensive quality evaluation in mobility research (Vander Laan, Franz and Marković, 2021).  

TABLE 1 - DATA QUALITY ASSESSMENT 

Quality Dimension Metrics Description 

Completeness 
Assessment 

Temporal Completeness Continuity of time series data, GPS data gaps 

Spatial Completeness Geographic coverage adequacy across study area 

Trajectory Completeness Proportion of complete vs. fragmented movement paths 

Accuracy 
Assessment 

Positional Accuracy  GPS coordinate precision, measurement errors 

Temporal Accuracy  
Timestamp precision, synchronization across data 
sources 
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Semantic Accuracy  
Correctness of inferred activities and location 
classifications 

Consistency 
Assessment 

Internal Consistency Logical relationships within mobility sequences 

Cross-Source 
Consistency 

Alignment across multiple data types 

Format Consistency  Standardized data structures and measurement units 

 

TABLE 2 - MEASUREMENT APPROACHES 

Quantitative Metrics Preprocessing Strategy 

Completeness 
Ratios 

Percentage of complete 
records (70-90% thresholds) 

High Completeness Minimal imputation needed 

Low Completeness 
Sophisticated reconstruction 
methods required 

Accuracy Metrics 
MAE, RMSE for positional 
accuracy 

Poor Accuracy 
Enhanced filtering and smoothing 
techniques 

Consistency 
Validation 

Statistical outlier detection, 
logical constraint checking 

Consistency Issues 
Standardization and 
normalization procedures 

 

3.1.3. Data Preprocessing Approaches 

Human mobility data preprocessing encompasses a diverse range of techniques that transform raw movement 
data into analyzable formats. Analysis of the literature reveals several primary preprocessing approaches. 

Data Cleaning and Filtering addresses basic data quality problems through systematic removal of problematic 
records. Key techniques include missing data handling to deal with incomplete datasets (Chen, Cai and Xiong, 
2021; Kong et al., 2022; Miao and Liao, 2025), eliminating GPS errors and invalid entries (Chen, Cai and Xiong, 
2021; Du, Meng and Liu, 2024), and duplicate elimination to prevent data redundancy (Nejadshamsi et al., 
2025). Irrelevant data filtering removes records that do not contribute to analysis objectives (Jiao et al., 2019; 
Kong et al., 2019). 

Semantic Enrichment represents the most common preprocessing approach. This category focuses on 
adding contextual meaning to raw location data through Points of Interest integration (Yang, Cheng and Chen, 
2018; Yin, Lin and Zhao, 2021; Shan, Sun and Zheng, 2022), activity purpose inference (Cai, Lee and Lee, 
2018; Yin, Lin and Zhao, 2021), and semantic categorization of locations and movements (Zhu et al., 2019; 
Shan, Sun and Zheng, 2022). 

Clustering and Segmentation group similar data points for analysis. Spatial clustering identifies location-
based patterns (Herberth et al., 2020; Solomon et al., 2021; Liu et al., 2022), while temporal segmentation 
divides data based on time patterns (Zhao et al., 2020; Jiang et al., 2023). Activity clustering groups similar 
behaviors (Jiao et al., 2019; Yin, Lin and Zhao, 2021), and trajectory clustering organizes movement paths with 
similar characteristics (Hussain et al., 2023; Si, Yang, Xiang, Wang, et al., 2024). 

Temporal Processing handles time-related data features through timestamp adjustment for consistency 
(Matloub and Kostanic, 2023), time binning and discretization for granularity analysis (Chen, Cai and Xiong, 
2021; Aljeri, 2022), and temporal segmentation to identify meaningful time periods (Thuillier et al., 2018; Ma et 
al., 2024). Time window analysis enables examining mobility patterns within specific time boundaries (Yin, Lin 
and Zhao, 2021; Jiang et al., 2023). 

Trajectory Processing focuses on movement path characteristics through trajectory reconstruction for 
incomplete paths (Li et al., 2019; Soares De Sousa, Boukerche and Loureiro, 2023), path smoothing to reduce 
noise (Andrade, Cancela and Gama, 2020), and trip segmentation to find distinct journeys (Zheng et al., 2018; 
Seppecher et al., 2021). Trajectory compression reduces data size while preserving essential movement 
information (Yuan et al., 2019). 

Spatial Processing handles geographic data characteristics through coordinate system conversion for 
consistency (Roy et al., 2022), hexagonal binning for spatial analysis (Matloub and Kostanic, 2023), and spatial 
tessellation for geographic area division (Francia, Gallinucci and Golfarelli, 2024; Hamann and Hagen, 2025). 
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Stay Point Detection identifies stationary locations through spatio-temporal constraints (Yang, Cheng and 
Chen, 2018; Zhao, Jonietz and Raubal, 2021), clustering-based detection methods (Solomon et al., 2021; Liu 
et al., 2022), and duration threshold approaches that define minimum stay times (Matloub and Kostanic, 2023). 

Map Matching aligns location data with geographic features through road network alignment (Vander Laan, 
Franz and Marković, 2021; Hussain et al., 2023), routing engine integration for accurate path reconstruction 
(Hamann and Hagen, 2025), and network snapping techniques that project GPS points onto transportation 
networks (Zhao, Jonietz and Raubal, 2021). 

3.1.4. Recommendation of Preprocessing Methodology 

Based on a comprehensive analysis of preprocessing techniques, general methodological recommendations 
are proposed to guide future mobility research projects. These recommendations offer practical guidance for 
implementing effective human mobility preprocessing pipelines. The methodology follows a structured four-
phase approach with an integrated activity that ensures systematic and comprehensive data preparation, as 
illustrated in Figure 6. 

Foundation Phase. This phase addresses all basic data quality problems that must be resolved before any 
sophisticated processing can begin. This comprehensive quality assessment ensures that poor-quality data 
does not create errors throughout the analytical pipeline. This phase includes data cleaning and filtering, 
outlier detection, and noise removal. Data cleaning and filtering handles missing data through appropriate 
imputation or removal strategies, eliminates erroneous records including GPS errors and invalid coordinates, 
removes duplicate entries that can skew results, and filters irrelevant data that falls outside the study area. 

Standardization Phase. This phase transforms heterogeneous mobility data into consistent formats that 
enable meaningful analysis across different data sources and collection methods. This includes temporal and 
spatial processing. Temporal processing establishes temporal consistency through timestamp normalization, 
time zone adjustment, temporal binning, and segmentation. This ensures coherent temporal analysis and 
prevents inconsistencies due to timing differences rather than actual behavioral variations. Spatial Processing 
involves coordinate system standardization, geographic filtering, spatial discretization, and map matching to 
align GPS coordinates with transportation networks.  

Enhancement Phase. This phase transforms standardized location data into meaningful mobility information 
by adding semantic context and identifying key behavioral patterns. This includes semantic enrichment and 
stay point detection. Semantic Enrichment adds contextual meaning to raw location data through POI 
integration, activity inference, semantic categorization, and context enhancement. Stay Point Detection 
identifies stationary locations where individuals spend significant time using spatio-temporal constraints, 
clustering methods, and duration thresholds. This distinguishes brief stops from meaningful activities and 
identifies important activity locations. 

Refinement Phase. This phase applies final optimization techniques to create clean, complete, and analytically 
useful trajectory representations. This includes trajectory processing, clustering, and segmentation. Trajectory 
processing optimizes movement path representation through trajectory reconstruction for incomplete paths, 
path smoothing to reduce irregularities, trip segmentation to identify distinct journeys, and trajectory 
compression to maintain essential characteristics while reducing data complexity. Clustering and 
Segmentation organize the refined mobility data into meaningful groups through spatial clustering, temporal 
segmentation, activity clustering, and trajectory clustering to support final pattern analysis. 

Validation and Quality Control. This activity encompasses systematic verification of preprocessing results 
through the data quality assessment framework and continuous monitoring throughout all phases. This applies 
the three-dimensional assessment approach—completeness, accuracy, and consistency evaluation—at each 
preprocessing stage to ensure that transformations improve rather than distort underlying mobility patterns. 
Quantitative metrics guide the selection of preprocessing strategies: completeness ratios (with thresholds of 
70-90%) determine whether to use imputation or reconstruction approaches, accuracy measures (MAE, RMSE) 
trigger the application of filtering and smoothing techniques when needed, and consistency validation through 
statistical outlier detection identifies the standardization requirements. Combined with sample checking, 
statistical validation, and comparison with expected mobility patterns, this integrated quality control approach 
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ensures that each preprocessing phase enhances data analytical value while maintaining the integrity of 
original mobility behaviors. 

 
FIGURE 6 - RECOMMENDED PREPROCESSING PIPELINE 

3.2. Methodological Landscape 

The methodological landscape of human mobility pattern mining represents a diverse and evolving field that 
combines various analytical approaches. This section examines four key aspects of the methodological 
framework used in current research. First, we analyze the common methods and algorithms that researchers 
frequently apply across different mobility studies, categorizing them into five distinct methodological 
approaches. Second, we explore the validation and evaluation techniques organized by their primary purposes: 
correctness validation, performance evaluation, and reliability assessment. Third, we examine how validation 
and evaluation techniques align with specific mining approaches. Finally, we present comprehensive 
recommendations for selecting appropriate validation and evaluation approaches based on specific analytical 
tasks in human mobility mining. Together, these components provide a complete methodological framework 
that guides both method selection and quality assessment in mobility pattern mining research.  

3.2.1. Common Methods and Algorithms for Mining Human Mobility 

The methodological landscape of mining human mobility encompasses diverse algorithmic approaches that 
have evolved from traditional statistical methods to sophisticated artificial intelligence techniques. Literature 
review identifies five common methodological categories, each contributing unique analytical capabilities for 
extracting meaningful patterns from complex mobility datasets.  

Statistical and Spatial Analysis Approaches represent foundational methodologies that utilize mathematical 
and statistical techniques for analyzing mobility data. These methods include trajectory similarity measures 
such as Dynamic Time Warping (DTW) and Longest Common Subsequence (LCSS) (Zhu et al., 2019; Jiang 
et al., 2023; Francia, Gallinucci and Golfarelli, 2024). Spatial parameters, including radius of gyration analysis 
and cross-correlation techniques (Wijayanto and Wulansari, 2021; Matloub and Kostanic, 2023). 

Machine Learning Approaches apply traditional supervised and unsupervised algorithms to discover patterns 
and relationships within mobility datasets. Classical clustering algorithms, including K-means and DBSCAN, 
effectively group similar trajectories and identify spatial clusters (Zheng et al., 2018; Aljeri, 2022; Hussain et 
al., 2023). Advanced techniques, such as Random Forests, Support Vector Machines, and ensemble methods 
like XGBoost and Gradient Boosting Decision Trees, for classification and prediction tasks (Liu et al., 2022; 
Roy et al., 2022). 

Deep Learning and Neural Network Approaches represent key emerging trends that leverage artificial neural 
networks to capture complex dependencies and relationships in mobility data. Graph Convolutional Networks 
(GCNs) effectively handle spatial relationships and network structures inherent in urban transportation systems 
(Kong et al., 2022). Sequential models, including Long Short-Term Memory (LSTM) networks, process 
temporal patterns and dependencies in movement sequences (Solomon et al., 2021). 

Probabilistic and Stochastic Approaches model mobility patterns as probabilistic processes for uncertainty 
and variability in human movement behaviors. Hidden Markov Models (HMMs) and Markov chains are relevant 
for prediction and state transition analysis (Yin, Lin and Zhao, 2021; Soares De Sousa, Boukerche and Loureiro, 
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2023). These approaches provide robust uncertainty quantification capabilities. They are increasingly 
integrated with emerging deep learning techniques to create hybrid modeling frameworks that combine 
probabilistic reasoning with neural network learning. 

Pattern Mining and Frequent Pattern Approaches discover recurring patterns and associations within 
mobility data through analysis of behavioral sequences. Association rule mining, sequential pattern mining, and 
frequent itemset mining techniques excel at identifying habitual behaviors and routine patterns (Francia, 
Gallinucci and Golfarelli, 2024; Ma et al., 2024).  

3.2.2. Validation and Evaluation Techniques 

Validation and evaluation techniques in human mobility pattern mining serve three main purposes that help 
researchers ensure their methods work correctly and produce reliable results, as shown in Table 3. 

Correctness Validation focuses on confirming that methods work as intended and produce accurate results. 
This includes statistical correlation and significance testing, such as Pearson correlation, t-tests, and chi-square 
tests, which help researchers determine whether the relationships they discover in mobility data are genuine 
or merely coincidental. Researchers can validate their findings by conducting ground truth comparisons and 
cross-validation techniques, including artificial gap testing and survey validation. Pattern discovery and mining 
validation employ methods such as transportation mode verification and temporal signature validation to ensure 
that the patterns identified by algorithms accurately represent real mobility behaviors. These correctness 
validation techniques are essential because they help researchers avoid drawing wrong conclusions from their 
mobility data analysis. 

Performance Evaluation focuses on measuring quantitative performance and accuracy metrics through 
machine learning metrics, such as MAE, RMSE, F1-score, precision, and recall. These metrics provide 
researchers with specific numbers to compare the effectiveness of various methods. The Elbow method, 
Silhouette coefficient, and validity indices are clustering evaluation methods that assist researchers in 
determining the validity of their clustering results and identifying meaningful groups in mobility data. Accuracy 
assessment and trajectory reconstruction employ metrics such as reconstruction error and Road Mismatch 
Fraction to evaluate the precision with which methods can reconstruct movement paths from incomplete data. 

Reliability Assessment ensures consistency and robustness across different conditions through algorithm 
comparison against established baseline methods, cross-validation techniques like k-fold and temporal 
validation, and robustness testing, including parameter sensitivity and replication studies. 

The selection of appropriate validation and evaluation techniques depends on the specific methodological 
approach employed in human mobility pattern mining, with each approach requiring tailored assessment 
strategies, as summarized in Table 4. 

TABLE 3 - VALIDATION EVALUATION TECHNIQUES BY PURPOSES 

Purpose Type of Validation Evaluation Example 

Correctness 
Validation 

Confirming that 
methods work as 
intended and 
produce accurate 
results 

Statistical correlation and 
significance testing  

Pearson correlation, t-tests, chi-
square tests 

Ground truth comparison and cross-
validation 

artificial gap testing, survey validation 

Pattern discovery and mining 
validation 

transportation mode verification, 
temporal signature validation 

Performance 
Evaluation 

Measuring 
quantitative 
performance and 
accuracy metrics 

Machine learning performance 
metrics 

MAE, RMSE, F1-score, precision, 
recall 

Clustering evaluation methods 
Elbow method, silhouette coefficient, 
validity indices 

Trajectory reconstruction and 
accuracy assessment 

Road Mismatch Fraction, 
reconstruction error 

Reliability 
Assessment 

Ensuring 
consistency and 
robustness 
across different 
conditions 

Algorithm comparison and baseline 
methods 

Comparative analysis against 
established methods 

Cross-validation techniques k-fold validation, temporal validation 

Robustness testing 
Parameter sensitivity, replication 
studies 
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TABLE 4 - VALIDATION/EVALUATION TECHNIQUES BY MINING APPROACH 

Validation/Evaluation Technique Example 

Statistical and 
Spatial Analysis 
Approaches 

Primary Validation: Statistical significance testing (t-
tests, chi-square), correlation analysis  

Pearson correlation with t-tests 
(Chen, Cai and Xiong, 2021);  
Chi-square testing (Du, Meng and 
Liu, 2024) 

Primary Evaluation: RMSE, MAE for spatial 
accuracy, Kendall's Tau for ranking accuracy 

Machine 
Learning 
Approaches 

Primary Validation: Cross-validation, ground truth 
comparison, baseline comparison 

F1-score for transportation mode 
detection (Roy et al., 2022);  
Precision/recall for activity 
prediction (Liu et al., 2022) 

Primary Evaluation: F1-score, precision, recall, 
accuracy metrics, confusion matrices 

Deep Learning 
and Neural 
Network 
Approaches 

Primary Validation: Train/validation/test split, 
hyperparameter tuning, ablation studies  
 

MAE and Pearson correlation for 
flow prediction (Kong et al., 2022);  
Rand Index for clustering (Si, Yang, 
Xiang, Li, et al., 2024) 

Primary Evaluation: MAE, Pearson correlation, 
specialized metrics (UACC, NMI, Rand Index) 

Clustering 
Approaches 

Primary Validation: Cluster validity indices, elbow 
method, visual inspection 

Elbow method and validity indices 
(Aljeri, 2022);  
Silhouette coefficient (Jiang et al., 
2023) 

Primary Evaluation: Silhouette coefficient, 
compactness measures, separation indices 

Trajectory 
Analysis 
Approaches 

Primary Validation: Manual verification, routing 
performance validation, map matching accuracy  

Manual waypoint validation 
(Vander Laan, Franz and Marković, 
2021);  
RMF and F1-scores (Soares De 
Sousa, Boukerche and Loureiro, 
2023) 

Primary Evaluation: Road Mismatch Fraction (RMF), 
trajectory similarity measures, reconstruction error 

Pattern Mining 
Approaches 

Primary Validation: Temporal signature verification, 
transportation mode consistency, survey comparison  

Temporal signature validation 
(Yang, Cheng and Chen, 2018);  
Transportation mode verification 
(Zhu et al., 2019) 

Primary Evaluation: Pattern coverage, support 
measures, semantic consistency 

Probabilistic and 
Stochastic 
Approaches 

Primary Validation: Likelihood testing, model fit 
assessment, parameter estimation validation  Maximum likelihood validation for 

distribution fitting Primary Evaluation: Log-likelihood, AIC/BIC, 
prediction accuracy 

 

3.2.3. Recommended Validation and Evaluation Guidelines 

The selection of appropriate validation and evaluation techniques in human mobility pattern mining depends 
critically on the analytical task and methodological approach employed. As illustrated in Figure 7, there are five 
common tasks in human mobility mining along with their validation and evaluation recommendation 
approaches.  

For prediction tasks, temporal validation strategies that train models on historical data and test on future 
periods provide the most realistic assessment of predictive capabilities, complemented by cross-validation 
techniques for robust performance estimation. Performance evaluation relies primarily on regression metrics, 
including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and correlation coefficients that 
quantify prediction accuracy against observed mobility behaviors.  

Classification tasks require stratified cross-validation to maintain class distribution balance across validation 
folds, with confusion matrix analysis providing detailed insights into classification performance across different 
mobility categories. The evaluation framework emphasizes F1-score, precision, recall, and ROC-AUC metrics 
that comprehensively assess classification quality while accounting for potential class imbalances common in 
mobility data.  

Clustering approaches necessitate cluster stability testing and parameter sensitivity analysis to validate the 
robustness of discovered mobility groups, with evaluation measures like the silhouette coefficient and validity 
indices, supplemented by visual assessment to ensure meaningful spatial-temporal cluster characteristics. 
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Trajectory reconstruction and pattern discovery tasks require specialized validation approaches. 
Trajectory reconstruction validation relies heavily on ground truth comparison using manually verified waypoints 
or known travel paths, as demonstrated by studies achieving high validation accuracy through systematic 
manual verification processes. Evaluation metrics focus on spatial accuracy measures, including RMSE for 
positional accuracy and path similarity measures that assess the fidelity of reconstructed movement 
sequences.  

Pattern discovery tasks employ domain expert validation and survey comparison to ensure that discovered 
patterns reflect genuine mobility behaviors rather than analytical artifacts, as evidenced by studies comparing 
mined patterns against national census data and mobility surveys. The evaluation framework emphasizes 
pattern support measures, coverage metrics that quantify the proportion of mobility data explained by 
discovered patterns, and semantic consistency measures that assess the meaningfulness of identified patterns 
within real-world mobility contexts.  

 
FIGURE 7 - RECOMMENDATION OF VALIDATION AND EVALUATION ON HUMAN MOBILITY TASK 

4. RESEARCH INNOVATION, CHALLENGES, AND FUTURE DIRECTIONS IN HUMAN MOBILITY 
MINING 

This section examines three interconnected dimensions: recent methodological innovations, persistent 
challenges, and future opportunities. Understanding these interconnected aspects provides researchers with a 
comprehensive roadmap for advancing human mobility pattern mining toward more effective, practical, and 
beneficial applications. 

4.1. Methodological Innovations and Technological Advances 

Recent technological innovations in human mobility pattern mining directly address fundamental limitations 
identified in traditional approaches, representing a paradigm shift toward more sophisticated, accurate, and 
scalable analytical frameworks. These innovations build upon the foundational statistical and machine learning 
methods discussed in previous sections while incorporating innovative technologies that overcome limitations 
in data processing, pattern recognition, and real-time analysis. Methodological innovations can be summarized 
into four key development areas: 

1. Advanced deep learning and AI technologies can overcome limitations in complicated pattern 
recognition and multi-dimensional data analysis that traditional statistical methods could not handle 
effectively. Multi-Pattern Graph Convolutional Networks (MPGCN) are presented to predict multi-
pattern flow using passenger mobility patterns and graph convolutional networks, addressing earlier 
difficulties in capturing complex urban transportation relationships (Kong et al., 2022). Geographic-
Semantic Graph Neural Networks (GSGNN) solve the problem of integrating spatial and semantic 
information in integrated analytical frameworks by combining geographic close proximity with semantic 
urban connection (Nejadshamsi et al., 2025). 
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2. Multi-modal and context-aware frameworks improve mobility analysis by combining varied data 
sources and contextual information, overcoming data integration difficulty and semantic limitations. 
Semantic itinerary recommenders are developed that combine spatial, temporal, and semantic 
dimensions from geo-tagged photos, addressing the lack of semantic dimensions in traditional 
recommender systems (Cai, Lee and Lee, 2018), and geographic context frameworks are created 
combining GPS features with transportation infrastructure and land use information, overcoming 
limited geographic context consideration in transportation mode detection (Roy et al., 2022). 

3. Advanced clustering and pattern mining innovations address computational efficiency and pattern 
identification constraints in existing methods. GRIDBSCAN and ST-TCLUS are developed for grid 
density-based and spatiotemporal trajectory clustering, addressing scalability issues in large-scale 
trajectory analysis (Zheng et al., 2018). In contrast, MIF-STKNNDC is introduced for multidimensional 
fusion to handle noise, outliers, and complex trajectory distributions (Jiang et al., 2023). 

4. Specialized applications and domain-specific methods address analytical needs and limits that 
general-purpose methods cannot handle effectively. Group Movement Pattern Mining based on 
Similarity (GMPMS) is developed for tourist identification from low-accuracy CDR data to address data 
sparsity in mobile phone datasets (Zhu et al., 2019). Converging Pattern Mining (CPM) frameworks 
are developed for proactive incident management to address real-time processing limitations in 
emergency response applications (Zhao et al., 2020). 

4.2. Current Research Gaps and Persistent Challenges 

Despite significant methodological advances and paradigm shifts described in previous sections, human 
mobility pattern mining research continues to face persistent challenges that limit both analytical capabilities 
and practical applications. These challenges represent fundamental barriers that current innovations have not 
yet fully resolved, requiring continued research attention and novel approaches. The identification of these 
gaps provides crucial guidance for future research directions and highlights areas where additional innovation 
is most needed to advance the field toward more robust, scalable, and practically applicable mobility analysis 
systems. 

1. Data Quality and Scalability Challenges represent fundamental challenges that affect most mobility 
research applications. Low sampling rates and data sparsity issues persist in GPS-based studies, 
resulting in unreliable datasets that pose computational efficiency challenges (Soares De Sousa, 
Boukerche and Loureiro, 2023). Similarly, low-frequency mobile phone data requires sophisticated 
reconstruction methods for meaningful analysis (Li et al., 2019). These data quality problems are 
compounded by GPS data gaps that need specialized approaches such as frequent-pattern mining 
and time geography constraints to address them (Zhao, Jonietz and Raubal, 2021). Beyond data 
quality issues, the processing and computational demands of big data create additional scalability 
barriers. Large-scale social media data shows limited scalability for spatio-temporal analysis (Aljeri, 
2022), while network-constrained trajectory clustering requires substantial computational resources 
(Hussain et al., 2023). These scalability problems highlight the need for distributed computing 
paradigms for large-scale trajectory mining (Francia, Gallinucci and Golfarelli, 2024). 

2. Methodological and Technical Limitations reveal gaps in current analytical approaches that 
prevent a comprehensive understanding of mobility behavior. A major limitation involves temporal 
dimension inadequacies that persist across many studies. Current clustering methods often neglect 
temporal dimensions (Si, Yang, Xiang, Li, et al., 2024), research frequently focuses on spatial data 
while ignoring temporal travel behavior patterns (Maiti and Subramanyam, 2019), and existing network 
models do not account for temporal passenger travel relationships (Kong et al., 2022). In addition to 
temporal limitations, semantic and context gaps create further analytical challenges. Raw GPS data 
lacks semantic information and may contain semantic bias (Shan, Sun and Zheng, 2022), while 
traditional recommender systems neglect important semantic dimensions that could improve analysis 
(Cai, Lee and Lee, 2018). 
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3. Application-specific and Domain Challenges create barriers to practical implementation and real-
world deployment. Real-time processing represents a significant limitation that prevents dynamic 
analysis capabilities. Current systems struggle with dynamic traffic conditions and lack real-time 
adaptability (Miao and Liao, 2025), while researchers encounter difficulties predicting atypical travel 
behavior and handling varying data density (Herberth et al., 2020). Alongside real-time processing 
issues, prediction and accuracy problems limit complex pattern recognition capabilities. Multi-pattern 
passenger flow in complex urban settings cannot be sufficiently captured (Kong et al., 2022), stay 
point prediction and demographic attribute influence remain challenging (Solomon et al., 2021), and 
existing methods struggle with noise, outliers, and complex trajectory distributions that are common 
in real-world mobility data (Jiang et al., 2023). 

4.3. Future Research Directions and Emerging Opportunities 

The analysis of current research gaps and methodological limitations reveals several promising directions for 
advancing human mobility pattern mining capabilities. Based on a comprehensive analysis of recent 
developments and identified limitations, future research opportunities can be organized into four interconnected 
categories. 

1. Enhanced Data Integration and Multi-Source Analytics represents a critical research direction that 
addresses current data quality and semantic limitations by integrating diverse data sources. Future 
research should focus on combining multiple data types, including GPS trajectories, mobile phone 
records, social media data, IoT sensor networks, and transportation infrastructure data to create 
comprehensive mobility datasets (Chen, Cai and Xiong, 2021; Aljeri, 2022). Advanced data fusion 
techniques are needed to handle heterogeneous data formats, varying temporal resolutions, and 
different spatial accuracies while maintaining analytical consistency across integrated datasets (Fu et 
al., 2019). Research should also develop standardized preprocessing pipelines that can effectively 
handle multi-source data integration challenges, including coordinate system alignment, temporal 
synchronization, and semantic consistency validation (Vander Laan, Franz and Marković, 2021). 
Additionally, investigation into privacy-preserving data integration methods becomes increasingly 
important as mobility analysis requires access to sensitive location information from multiple sources 
(Ibañez et al., 2025). 

2. Advanced Spatiotemporal Modeling and Real-Time Analytics addresses the temporal dimension 
inadequacies and real-time processing limitations identified in current research. Future investigations 
should focus on developing spatiotemporal architectures that can effectively capture both spatial 
relationships and temporal dynamics in mobility patterns, moving beyond current approaches that 
primarily emphasize spatial characteristics while neglecting temporal dimensions (Kong et al., 2022; 
Nejadshamsi et al., 2025). Research opportunities include adaptive graph learning algorithms that can 
dynamically adjust to changing urban conditions, dynamic attention mechanisms for transportation 
networks that respond to real-time conditions, and distributed modeling schemes that can handle 
spatial non-stationarity across different urban contexts (Nejadshamsi et al., 2025). Advanced machine 
learning architectures, including Transformer models, Generative Adversarial Networks for data 
augmentation, and hybrid approaches that combine different modeling techniques, should be explored 
to improve prediction accuracy and handle complex mobility patterns (Ibañez et al., 2025; Miao and 
Liao, 2025). 

3. Semantic Enhancement and Context-Aware Analytics represents a fundamental research 
direction that addresses the semantic and contextual limitations in current mobility analysis 
approaches. Future research should develop sophisticated methods for semantic trajectory 
enrichment that can automatically infer activity purposes, transportation modes, and contextual factors 
from raw movement data (Hamann and Hagen, 2025). Investigation into semi-supervised and 
unsupervised approaches for semantic annotation becomes critical for handling large-scale datasets 
where manual labeling is impractical (Shan, Sun and Zheng, 2022). Research should also focus on 
developing comprehensive validation methodologies for unsupervised learning results in mobility 
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analysis, as current approaches lack standardized evaluation frameworks (Hamann and Hagen, 
2025). Additionally, integration of socioeconomic factors, environmental conditions, and urban 
infrastructure characteristics into mobility models requires systematic investigation to improve 
contextual understanding and prediction accuracy (Roy et al., 2022; Nejadshamsi et al., 2025). 

4. Scalable Computing and Technological Infrastructure addresses the computational and scalability 
challenges that limit the practical application of current mobility analysis methods. Future research 
should investigate distributed computing paradigms specifically designed for large-scale trajectory 
mining, including cloud-based processing architectures and edge computing optimization for real-time 
mobility analytics (Francia, Gallinucci and Golfarelli, 2024; Miao and Liao, 2025). Development of 
efficient algorithms that can handle massive datasets while maintaining analytical accuracy represents 
a critical research priority, particularly for urban areas with high population density and complex 
transportation networks (Hussain et al., 2023). Research opportunities include exploring blockchain-
based security mechanisms for IoT mobility networks, digital twin technology for urban simulation and 
prediction, and AI-enhanced multi-stage learning approaches for intelligent transportation systems 
(Miao and Liao, 2025). Investigation into model transferability across different geographic contexts 
and urban environments is essential for developing universal mobility analysis frameworks that can 
adapt to diverse conditions without requiring extensive retraining (Roy et al., 2022; Nejadshamsi et 
al., 2025). 

5. CONCLUSIONS 

This systematic literature review provides a comprehensive analysis of human mobility pattern mining research 
across three important dimensions: data processing approaches, methodological landscape, and future 
research directions. The study reveals that while significant progress has been made in developing 
sophisticated analytical methods, several fundamental challenges still need to be addressed. 

The analysis of 43 carefully selected papers shows that human mobility research has evolved from simple 
statistical methods to advanced artificial intelligence systems. Based on the literature analysis, data quality 
assessment can be categorized into three fundamental dimensions that directly impact analytical reliability and 
research outcomes. However, data quality and scalability issues continue to limit the practical application of 
many methods. Many studies struggle with incomplete or noisy data, especially when dealing with large-scale 
datasets. Additionally, most methods have limited ability to work across different geographic contexts or adapt 
to changing conditions in real-time. 

Enhanced data integration and multi-source analytics represent the most needed, requiring a combination of 
heterogeneous data formats while maintaining analytical consistency. Advanced spatiotemporal modeling and 
real-time analytics address persistent temporal dimension inadequacies through adaptive graph learning 
algorithms that can respond to changing urban conditions. Semantic enhancement and context-aware analytics 
offer solutions for the semantic limitations in current approaches through sophisticated methods for automatic 
activity purpose inference and contextual factor integration. Scalable computing and technological 
infrastructure address computational barriers through distributed computing paradigms specifically designed 
for large-scale trajectory mining and efficient algorithms that maintain analytical accuracy while handling 
massive datasets. 

For new researchers entering this field, this review provides practical guidance on selecting appropriate 
methods, understanding data requirements, and selecting suitable validation approaches. The systematic 
organization of knowledge presented here can help researchers avoid common pitfalls and build upon existing 
work more effectively. Future research should focus on developing methods that are more robust, scalable, 
and applicable across different contexts while maintaining high standards for privacy protection and the ethical 
use of mobility data. 
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